A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

نویسندگان

  • Christoph Schmidt
  • Britta Pester
  • Nicole Schmid-Hertel
  • Herbert Witte
  • Axel Wismüller
  • Lutz Leistritz
چکیده

Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upsampling to 400-ms Resolution for Assessing Effective Connectivity in Functional Magnetic Resonance Imaging Data with Granger Causality

Granger causality analysis of functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent signal data allows one to infer the direction and magnitude of influence that brain regions exert on one another. We employed a method for upsampling the time resolution of fMRI data that does not require additional interpolation beyond the interpolation that is regularly used for slice-timin...

متن کامل

Mapping the Voxel-Wise Effective Connectome in Resting State fMRI

A network approach to brain and dynamics opens new perspectives towards understanding of its function. The functional connectivity from functional MRI recordings in humans is widely explored at large scale, and recently also at the voxel level. The networks of dynamical directed connections are far less investigated, in particular at the voxel level. To reconstruct full brain effective connecti...

متن کامل

Canonical granger causality between regions of interest

Estimating and modeling functional connectivity in the brain is a challenging problem with potential applications in the understanding of brain organization and various neurological and neuropsychological conditions. An important objective in connectivity analysis is to determine the connections between regions of interest in the brain. However, traditional functional connectivity analyses have...

متن کامل

Frequency domain connectivity identification: an application of partial directed coherence in fMRI.

Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. S...

متن کامل

Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2016